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Abstract-An upper displacement bound is presented for thermal loading problems that allows
energy to be dissipated as a result of the cyclic variation of stntin in parts of the structure. Use
of the bound requires a knowledge of the thermo-elastic stress distribution resulting from the
cycle of temperature and arbitrary stress fields that are in equilibrium with the primary load
and a dummy load applied in the direction of the required displacement rate. Certain limitations
are imposed on the choice of equilibrium stress fields and. as a result, the bound can only be
applied to a limited range of problems. Situations for which the bound can and cannot be used
are examined.

The bound is used to obtain a solution for the plate problem originally analysed by Bree
(10). The results are compared with the calculations of O'Donnell and Porowski [II) who adopt
a different material model.

I. INTRODUCTION

In an accompanying paper [1] upper bounds on the deformation rate were derived for
structures subjected to low levels of thermal loading for a material that deformed ac
cording to the Bailey-Orowan theory of creep [2]. This material model was chosen as
opposed to a non-linear viscous model because it gave the more severe structural
behaviour under cyclic loading conditions. Tests on simple two bar structures ofCopper
[3] and 31655 [4] also indicate that the recovery model gives the better prediction of
experimental results. In these experiments the stresses remained tensile throughout
the duration of the tests and the effects of reverse cycling were not investigated.

When a structure is subjected to high levels of thermal loading reversed plastic
straining occurs in parts of it. Material behaviour under reversed loading conditions
has received a lot of attention over the past few years [5], but no unified material model
that lends itself to simplified analysis has yet emerged. With the present state of knowl
edge it seems pertinent to use the material model that predicts the most severe response
of the structure when designing a structural component.

Ponter [6] has examined the problem of thermal loading in the absence of creep.
His conclusions are best illustrated by considering the two bar structure of Fig. I. The
two bars are constrained to deform axially by the same amount under the influence of
a constant load P whilst the temperature of the thicker bar is oscillated between 6min

and 60 and that of the thinner bar is oscillated between 6min and 60 + A6. Under this
thermal loading the maximum thermo-elastic stress occurs in the thinner bar at the
temperature 60 + A6. It is

CTt = lEcxA6.

Figure 2 shows the shakedown and ratchet boundaries for an elastic-perfectly plastic
material and a material model that allows complete isotropic hardening in parts of the
structure that suffer large variations of thermal stresses, in this instance the thinner
bar. For higher levels of thermal loading the isotropic hardening model gives the most
conservative estimate of the ratchet boundary. The boundary found from a set of ex
periments on a two bar structure of copper [6] falls between those predicted by the
two material models, thus demonstrating that the assumption of perfectly plastic be-
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Fig. I. Two bar structure subjected to a constant load P and cyclic variation of temperature.

haviour can be nonconservative. This may seem a rather surprising result since it is
often assumed in structural analysis that it is safe to ignore the effects of hardening.
The reason for this anomaly is that in thermal loading problems the assumption of
perfect plasticity means that the range of stress is limited to 2ay (twice the yield stress)
in regions of the structure that suffer large thermal strains. Because of equilibrium
considerations the effect of this is to also limit the range of stress in the remainder of
the structure, and as a result a larger primary load can be carried before yield is violated.

In [I] the same two bar structure was analysed for a material that suffers creep.
Four different material models were considered:

(a) Non-linear viscous material.
(b) Non-linear viscous/perfectly plastic material.
(c) Isotropic hardening/recovery model.
(d) Isotropic hardening/recovery model with limiting yield surface.

For simplicity the following assumptions concerning the rate of loading and material
properties were also made:

(i) Rapid cycling. That is when the cycle time is small compared with characteristic
material times [7].
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Fig. 2. Shakedown boundaries for two bar structure of Fig. I. The thin lines represent contours

of~ = O.S for: (a) non-linear viscous material model; (b) non-linear viscous/perfectly plastic
(7,•

. material model; (c) recovery model; (d) recovery model with limiting yield stress.
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(ii) Omin is outside of the creep range.
(iii) The creep properties over to temperature range 6n to On + ~ eare independent

of temperature and can be expressed in the form

. ()"~ = :0 (I)

where E.o is the strain rate at a constant stress 0"0.

The constant uniaxial stress that leads to a strain rate equal to that experienced by
the two bars is defined as the reference stress, O"R. Contours of constant reference
stress predicted by the four material models are shown in Fig. 2. The combination of
cyclic hardening and recovery of the flow stress during the high temperature part of
the cycle leads to the most severe result. It is this material model that will be analysed
in detail in the present paper.

The upper bound used in [1] ceases to be of any practical use when reversed plastic
straining takes place in the structure. This is because the bound is presented in terms
of total energy dissipated, and no distinction is made between the energy that is dis
sipated as a result of reversed straining and that which is dissipated as a result of the
net deformation of an element of material. In the next section an alternative, yet more
restrictive, bound is derived that takes into account cyclic straining. The restriction
lies in the fact that it is only a bound on the rapid cycle solution [8] and it can only be
applied to certain types of thermal loading problems. As in all bounds based on energy
dissipation only the overall deformation of the structure is bounded. It happens that
for situations where it cannot be used the design problem is not one of global defor
mation but one of localised strain accumulation. For conditions of rapid cycling a lower
bound can be found to the rate of accumulation of strain at any point in the structure.

2. STRUCTURAL BEHAVIOUR FOR HIGH LEVELS OF THERMAL LOADING

The response of a material element to any loading situation was discussed in [I] and
[2] for the recovery model. Under rapid cycle conditions an element of material creeps
at a rate determined by the maximum value of the effective stress, <1>, experienced
during the cycle.

. En a<l> II
Eli = -;; <I>~ax - exp[ 'Y(9 - 90)) dT

0"0 iJO"Ii 0
(2)

where T = .!..- , I is the time into the cycle and Ie is the cycle time. The quantity 'Y is
Ie

defined as

where ~H is the activation energy for creep, R is the universal gas constant and 60 is
a reference temperature.

Here we are going to examine structural situations where the thermal loading is
cycled between two prescribed limits. Then if <I> is the salpe at both ends of the cycle
the overall strain rate is

• Eo {L 1
} [ 0<1> iJ<I>]Eli = - <l>n exp[-y(O - 90)] dT . 'Tl -. + (l - 'Tl)-

<T8 0 iJO"Ii ~
(3)

where O"b and ~ are the stresses at the two ends of the cycle and 'Tl takes a value
between 0 and 1. 'Tl is not related to the cycle time but is determined from the com
patibility requirement of the entire structure [9].
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When considering the possibility of reversed plastic straining it proves advantageous
to write the stress at a point in the form

Aa~crij ::: crt ± -2- (4)

where crij is the stress distribution in equilibrium with the primary load Pi and Aa~ is
the range of thermo-elastic stress at that point. Choosing an equilibrium stress field,

* 0p orcrij ::: crij + crij (5)

where cr"J' is a stress field in equilibrium with Pi and cril is in equilibrium with a dummy
load T; applied in the direction of the required displacement rate, such that

* A -0 0crij . u.crij = (6)

in a volume V; of the structure, it is shown in the Appendix that the deformation rate
is bounded by

L1 T;i~; dS ~ n~ {Iv.; <f>~~1 [n : 1 (cr; ± !:J.:~) ] [L1

eY(8-6Q} d-r] dV

+ Iv~. <f>n-I C: t crt + !:J.:~). <f>2 (n : t crt) [L' e~(8-9u) dT] dV} (7)

for a von Mises material under rapid cycle loading conditions. V; is that volume of

the structure remaining after V;· has been removed. <f>ma~ [n : 1 (crt ± !:J.:~) ] is

the maximum value out of <f> [_n_ (cr~ + !:J.d-t)] and <f> [_n_ (cr~ _ !:J.d-t)] .
n+l II 2 n+l II 2

In the Appendix it is shown that the bound is only valid if the stress field crt is

chosen such that <f> (n : 1 u; + !:J.:~) has the minimum possible value in the volume

V;. It is not always possible to find a stress distribution that satisfies this condition
and is also in equilibrium with P; and T;. This puts a limitation to the range of problems
for which the bound can be employed.

Ponter [6] has identified two categories of structural behaviour below the creep range.
The difference between the two types of behaviour lies in the ability of a structure to
redistribute stress. In category A structures the primary load can be completely shed
from regions that suffer large cyclic thermal stresses. These regions then experience
reversed cyclic plastic strains and the structure can shakedown plastically. This type
of behaviour is evidenced by the existence of a reversed plasticity region on the Bree
diagram.

If from general equilibrium considerations components of the applied load must be
transmitted through the volume of material that suffers large cyclic thermal stresses
then no reversed plasticity region exists on the Bree diagram. Ratchetting takes place
at all points outside of the elastic shakedown boundary. This type of structural be
haviour belongs to the second category, category B. For low levels of primary load
the ratchet mechanism is one of local accumulation of plastic strain.

In the following two sections it is shown that these classifications of structural be
haviour apply equally well in the creep range. For category A structures it is always
possible to use the bound of eqn (7), but for category B structures the bound can only
be used in a small number of instances.
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3. CATEGORY A STRUCTURES

Ponter [6J has shown that in the absence of creep a structure will shakedown if an
arbitrary stress field exists such that

fI"lj = 0

in a region VF of the structure, where VF is the volume within which

and

(
A.8).p ~ flij

~max fliJ ± -2- =E; fly

in the remainder of the structure.
The plastic shakedown boundary is then given by an equation of the form

fly = f(P. fI,)

(8)

(9)

(10)

(11)

where f(P, fI,) is a function of the primary load P and maximum thermo-elastic stress
fI, .

For arbitrary values of P and fit an equilibrium stress field is given by eqns (8)-( 10)
with fly replaced by fiR. where

If a stress distribution can also be found such that

.1"
flij = 0

in V; = VF • then

.... (n * 4f1~) .... (4f1~)'I' --fl·· + - = 'I' -
n + I U 2 2

in V;, which is the minimum possible value there. and the bound, eqn (7) can be used.
Because of this choice of stress distribution the integral over the volume V; in eqn (7)
is zero and we need only consider the remaining volume V:. The bound now reduces
to that used in [I], but applied to a reduced volume, V:.

In [I] shakedown solutions were used that assumed a variation ofyield stress through
the structure. In many problems this is an unnecessary refinement and the use of a
yield stress that is constant is accurate enough for use in design.

A situation that is typical of category A structures is the plate problem first analysed
by Bree [lOJ. The loading situation is shown in Fig. 3 along with the thermo-elastic
stress distribution. The resulting shakedown boundaries are shown in Fig. 4. When fI,;;.. 2f1y the plastic shakedown boundary is given by [6. IOJ

fly = Vflpfl,. (12)

The equilibrium stress field at a point on the boundary given by Ponter [6], who allows
cyclic hardening at the outside of the plate, is shown in Fig. 5. The outer edges of the
plate only carry the thermal load whilst the central region also supports the primary
load, fly being the maximum stress it experiences during the cycle.
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Fig. 3. Temperature and thermo-elastic stress distribution (or Bree plate.

For any loading situation in the region C'COBB' of the Bree diagram an equilibrium
stress field is

for

and

cI>(aijP) = 0
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Fig. 4, Bree diagram showing contours of constant reference stress.
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Fig. 5. Equilibrium stress field for a point on the plastic shakedown boundary in Fig. 4. V;. is
the volume of material that experiences cyclic plastic strdins.

for

a d
-~lzl~
2 2

where

aR = Yapa,

and

a = 2aR . d.
a,

If ail is selected such that

when

and

cf>(aijT) = 0

when

a d
-~lzl~
2 2
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(13)

then substitution of the above eqns into the bound, eqn (7), and optimizing w.r.t. f3
gives

f3= n
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U Eo f 1/2 { ( z) } (z)-/ =E; - O'R >.. exp -yA 6, - + (1 - A) exp[-y(6min - 60 )] d -
O'on -1/2 a a

where / is the length of plate and >.. is the portion of the cycle spent at the higher
temperature. The temperature A6, is defined as

AO, ;::;: 20'R . AO
0',

40'R
;::;: En . (15)

Following the procedure used in [I] we define a reference material test conducted at
constant stress O'R and cyclic temperature history. The temperature being oscillated
between OR and Omin, where OR is maintained for a fraction A of the cycle and is defined
as OR ;::;: 00 + xA 0,. The resulting mean strain rate in such a test is

ER ;::;: E~ crR{A exp('YxAO,) + (1 - >..) exp[-y(6min - Oo)]}.
0'0

If we define OR so that

then, from eqns (14)-(16), the reference temperature is given by

Ea. I [Ea. . h (2'YO'R) ]x;::;:-- n --sm --
4-YO'R 2'YO'R Ea.

For small values of 2~:R this reduces to

(17)

In most practical situations the value of x given by eqn (17) is small and it is sufficient
to let OR ;::;: 00 , the mean temperature of the plate.

Contours of constant reference stress O'R given by eqn (13) are plotted on Fig. 4
along with the results for low levels of thermal loading [I]. For category A type struc
tures the shape of the O'R contours is given by the equation for the plastic shakedown
boundary with 0'y replaced by 0'R' The deformation rate of the structure can be related
to the strain rate in a uniaxial test at constant stress, O'R, and cyclic temperature between
00 and Omin'

A comparison of the results given here and in [I] with those given by O'Donnell and
Porowski [I I] is given in Section 5.

4. CATEGORY B STRUCTURES

Two structural problems that fall into this category of behaviour are shown in Figs.
6 and 8. Ponter [6] has analysed the plastic deformation of these structures in the
absence of creep.

The first situation considered here is that of a temperature front oscillating over a
small portion of tube, Fig. 6. The shakedown boundaries for this problem are shown
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Fig. 6. Thermo-elastic stress distribution in the vicinity of a temperature front that moves along
the tube.

in Fig. 7. Beyond AB the mode of plastic incremental collapse is overall axial extension
of the tube. While beyond CB the tube deforms by a local thinning and extension in
the region of oscillation of the temperature front.

The creep deformation for loading situations in the region A'AOBB' of the Bree
diagram was analysed in [I]. In the next sub-section we apply the bound of eqn (7) to
the region C'COBB'. The result is a bound on the overall axial deformation rate. Use
ofthe bound gives no information about the local accumulation of strain in the structure.
It is shown that in design the local accumulation of strain is the most important aspect
of structural behaviour. as it is at low temperature. An estimate of the rate of accu
mulation of strain in the region of oscillation of the temperature front is given.

In sub-section 4.2, it is shown that the bound cannot be used for the problem of a
plate supporting a normal pressure. Fig. 8. for high levels of thermal loading. This is
not a great drawback since, as in the tube problem. it is the rate of accumulation of
strain in regions that suffer high levels thermal loading that is important in design.
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Fig. 7. Bree diagram for short travel problem showing contours of constant reference stress.
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Fig. 8. Thermo-elastic stress distribution in simply supported circular plate for temperature
distribution shown.

4.1. Temperature front moving along a tube-short travel problem
Over the region where the temperature front oscillates the range of thermal loading

is

aut = 2Ut

aU~ = aU: = 0
where

Eaae
Ut =--

2

and the subscripts <P, R and a denote hoop, radial and axial components respectively.
Outside this region the range of thermal loading is practically zero.

Any annular element of material must transmit the axial stress Up. So the only stress
that can redistribute is the hoop component and we find that in the region of oscillation
of the temperature front the minimum possible value of <p is

(18)

and the resulting residual hoop component of stress is

this must be balanced by a distribution of hoop stress in the remainder of the tube.
But if the tube is sufficiently long then this additional stress can be safely ignored.

Selection of U'T = ! Up where uOT is the axial stress resulting from application of the
n

dummy load, permits the choice

(
n * a&~.)<p --u.. +_u

n + 1 u 2 = <Pmin

in V;, where V; is the volume over which the temperature front moves, and

[
n (* a&~.)]<Pmax ;+J Uij ± T = Up
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in the remainder of the tube. The bound then becomes
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n-l

f/o<Tp(f<T~ + <T~)-2 {A + (1 - A) exp[-y(6" - 6o)]}) (19)

where 1<. is the length of tube always subjected to the lowest temperature, 6(., Ih is the
length at the highest temperature, 60 and 10 is the length of tube over which the tem
perature front oscillates. In deriving eqn (19) it was assumed that the temperature front
moves very fast and remains stationary for a time at both extremes of the cycle. A is
that fraction of the cycle when 10 experiences the high temperature.

Unless the tube is short, eqn (19) shows that the overall deformation rate of the tube
is not very sensitive to the presence of the temperature front. For this type of problem
it is not the overall deformation of the structure, but the accumulation of strain locally,
that is limiting in design. For this particular problem the ring of material over which
the temperature front moves must transmit the axial load. Because of this we are able
to calculate the minimum value of <1>, eqn (18), and it follows that the rate of accu~

mulation of effective strain locally is

(20)

under rapid cycle loading conditions. This is an unsafe bound but it gives us an idea
of the behaviour of the structure. For large values of <T, the local deformation rate is
much greater than the mean rate.

If we define <TR as

then

where

,,-1

<TR = (fu~ + <Tn-r;- • <TJj" (21)

(22)

is the strain rate in a uniaxial test at the constant stress ClR when the temperature is
cycled between 6(. and 60.

Contours of constant reference stress are plotted in Fig. 7 for n = 5.

4.2. Plate supporting a normal pressure
The loading situation for this problem is shown in Fig. 8. Each element of plate must

transmit a shear stress

pr
T =-

2h

assuming that the shear stress is uniformly distributed through the thickness of the
plate, h. As a result the minimum value of <I> at any point is

{ (Pr)2 [ r ( r)]2 ~}112
<l>min = 3 2h + 1 - 3 Ii 1 - Ii ; (23)
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Ecx.il6
C1'=-3-'

Unless V;' is very small it is not possible to find a stress distribution such that

<P (n : I C1~ + b.:~) equals <Pmin and also satisfies equilibrium in V:" The bound of

eqn (7) cannot therefore be used for this problem.
For large values of the ratio urlp we would expect the accumulation of strain in

regions that suffer large variations of thermo-elastic stress to be the most critical feature
of structural behaviour. as opposed to the overall deformation of the plate. When Ut/p
is large we can estimate the rate ofaccumulation of strain at the support in the following
manner:

the outer ring of material must carry a shear stress

pR
T=-

2h

and because the stress cannot redistribute in this direction we find that strain accu
mulates at a rate

. v'3Eo [3 (PR)2 cif]~ pR
E ;;;. -- - - + - 2 - {X + (I - X) exp['y(e. - eo)]}

2C184h 4 h (
(24)

where e(. is the uniform temperature when there is no temperature gradient across the
plate and eo is the temperature at the outside edge when there is a gradient.

If we define a reference stress, UR

[
3 (PR)2 U;]~ (v'3PR),"n__ +_ 2n __

4 h 4 211

or in terms of the limit load

C1R = [27 (!.. .!!)2 +! (C1t)2]n2~1 (3v'3PR.!.. .!!) lin (25)
16 P,. R 4 C1y 4 PL R

where

then

where ER is given by eqn (22).

Contours of constant reference stress are plotted in Fig. 9 for n = 5 and i = 110 ,

At the present time we are unable to find expressions for the deformation of the
plate in the region DOB of the Bree diagram. This must await the development of a
more general bound for instances ofcyclic straining or the production ofexact numerical
results.
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Fig. 9. Bree diagram for simply supported plate showing contours of constant reference stress.

The line OD has been drawn in an arbitrary position in Fig. 9 since the range of
applicability of eqn (25) is unknown at the present time.

S. DISCUSSION

In [1] upper bounds to the deformation rate of structures subjected to low levels of
thermal loading were given. Stress distributions resulting from low temperature shake·
down analyses were used to facilitate the production ofthese bounds. Here these results
have been extended to high levels of thermal loading through the use of a bound on
the rapid cycle solution that takes into account reversed cyclic strains during a loading
cycle.

Ponter [6] has identified two types of structural behaviour in the absence of creep
effects. It has been shown here that these classifications of structural behaviour apply
equally well when deformation due to creep becomes important. Problems typical of
the different classes have been analysed in Sections 3 and 4.

In Section 3 an upper bound is given for the Bree problem [10] which is typical of
the behaviour of category A type structures. The deformation rate is related to the
strain rate of a uniaxial specimen subjected to a constant reference stress, UR, and a
temperature that is cycled between 80 , the mean temperature in the plate, and 8min.

Contours of

UR = 0.5
Uy

predicted by the present analysis and by O'Donnell and Porowski [11] for a non·linear
viscous/perfectly plastic material under rapid cycle conditions are compared in Fig.
10. In their analysis it was assumed that ami" is outside of the creep range and that the
creep properties at the high temperature end of the cycle are independent of temper
ature. Although O'Donnell and Porowski [11] do not mention a reference temperature
the choice of a temperature that is cycled between 80 and amin in the reference test is
consistent with their analysis.

From Fig. 10 it can be seen that the present analysis leads to the more conservative
result. The experimental results of Megahed, Ponter and Morrison [3, 4] also vindicate
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Fig. 10. Contours representing~ = 0.5 for: (il recovery model; (iiI non-linear viscous/perfectly
U.\,

plastic material model.

the use of the recovery model. If the difference between eo and emin is large then we
might expect the results predicted by the recovery model to be over conservative, as
the variation of flow stress with temperature has not been included in the analysis. The
recovery model can be easily ammended to take into account this temperature sensi
tivity of the flow stress. Cocks and Ponter [12] discuss the application of this modified
model to thermal loading problems. The resulting reference stress lies between the two
results of Fig. 10.

The bound developed here has only limited application for category B type struc
tures. For this class, however, it is not the overall deformation of the structure, but
the accumulation of strain in parts of the structure that sutTer large thermal stresses
that is limiting in design for high levels of thermal loading. Estimates of the rate of
accumulation of strain in these highly stressed regions are given in Section 4. Because
this local deformation is not constrained in the examples considered here (it is through
thickness strain) the ASME design codes [13] classify it as a primary strain. As a result
the total accumulation of strain is limited to 1% and not 5%, as it is for a secondary
strain.
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APPENDIX

Upper bound 10 rapid cycle solution
Under rapid cycle loading conditions an element of material creeps according to eqns (2) and (3).
If under constant loading conditions an element of material creeps at a rate

. Eo ncjl L1

f,u = -;; cjI" - exp 'Y(e - eo) dT
ao Dau 0

we can write the convexity condition [14, 15J

(j'b n 10'10 I -,,'(ja'·f." - -- a··f, .. os;; -- u;-f. ..
(/1/ n+11J1J n+1 IJ(/

(AI)

(A2)

(A3)

where a1l and at are any two stress states and Eij and t~ are the resulting respective strain rates given by eqn
(All.

Fig. Al(a) shows a structure subjected to a constant primary load, PI, and cyclic thermal loading such
that the actual stress state in the structure is

4c7~'
au = a~:t T'

Now consider the same structure subjected to a constant load _n_ (Pi + Ti) and _n_ a: = _n_
n+1 n+1 n+l

(ail' + aljT) is any stress field in equilibrium with~I (Pi + Til, Fig. Al(b). The volume of the structure
n+

where our choice of a: is such

cjI (_n_a~ +~) = cjI (_n_ au _~)n+I(/2 n+1 2

lal

tbl

Fig. AI. (a) Structure subjected to constant primary load Pi and cyclic variation of temperature.
(b) Stress distributions used in bound.
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will be termed V;. For a von Mises material a consequence of eqn (A3) is that

(A4)

in this region.
We will term the remainder of the structure V:. These two volumes can now be examined separately.

The volume V:
If a& is identified with the actual stress distribution, ali, and aU is set equal to

n * n Ad'"a~ =--ali:t tI

n+1 n+12

the convexity condition, eqn (A2) can be used at each end of the cycle:

n *., n p'l;+J alif.ij - ;;+I a'{jf.ij

.e;; --!.- to 41" + I [--!!- (au + ~)]. (' exp 'Y(O - 00) dT
n+lalI n+1 2 Jo

n .'2 n e,'2;;+I aijf.ij - ;;+I a lIf.ij

I to [n ( * Ad''')] ~I.e;; -- - 41"+ I -- 0''' - --"- • exp -y(0 - 80) dT
n + I ann n + t tI 2

where Eli is the strain rate given by eqn (AI) for a stress

and t~ is the resulting strain rate for

The r.h.s. of eqns (AS) results from the use of eqn (AI) for t~ and noting that

(AS)

If the first of eqns (AS) is multiplied by 1) and the second by (l - '1'1), where '1'1 is that fraction of tb that
contributes to the overall strain rate of the element of material, we find after combining the two equations
that

n * . 1 Eo { "+ I [ n (* Ao-")] "+ I-- (a" - ae)f. .. .e;; -- - 1J4I -- a .. + =.::J! + (1 - ",)..Ln + I tI tI tI n + I all n + I tI 2 " '"

where

[ n (* Ad'~)]} (Ix ;;+I aij - -2- . Jll exp 'Y(O - 00) dT

I to [n ( Ad"')] Ie l

.e;; -- - 4I:;':~ -- a~:t _I} • exp 'Y(O - 80) d-r
n+la8 n+1 I} 2 0

(A6)

tli = 'r)tb + (l - Tl)~

is the overall strain rate ofthe element ofmaterial, see eqn (3), and4lmax [n : I (au", Ao-t/2)] is the maximum

valueof 4l[n: 1 (au + Ac1t/2)] and4l[n: I (au - Ao-t/2)).

The volume V;
Application of the convexity condition to each end of the cycle using the stress states

a& = au

and

" n * Ac1~au =;;+I au :t T



High levels of thermal loading

leads to the result

n • . I Eo -J (fl • A6'&) 2 (n *) 11
- (a·· - aP.}E· '!Ii" -- - <It" - (J"' + -- . ~ -.- CT' exp 'Y(6 - eo) dTn+l II II II n+la'& n+l ll 2 n+l II

i Eo [ (n A~") (A~)J . (Aar.) L1
+ -- - 4:',,-1 -- 0'; + _v - ~:.;,: O'f?·;t: _li 4>1 _'1. exp "f(8 - 80) dT.

1I+lu8 //+1 2 II 2 2 0
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(A7)

(A8)

The stress ~ll(~ ;t: Ag~) is not known. but if we select "if such that 4t(,. : 1 0'; + Aot12) has the

minimum possible value in v;. we may write

_.n «(T~ _ aP-lE .. Ei: _1_ in q.1I-J (._n_ a! + A&&) . $2 (_n_ tl'~) (t eXP'Y(8 _·eo) dT
n+1 II lJ II n+ltrS n+I" 2 n+1 II .h

Integration of eqn (A6) over the volume V: and of eqn (A8) over the volume V; and application of the
principle of virtual work leads to the result of eqn (7).


